Electronic Communication has been one of the most popular textbooks in its field for many years. This expanded Sixth Edition utilizes the same user friendly format to prepare students for the operation, installation, and maintenance of most modern electronic and radio communication systems. Performance objectives have been added to each chapter to guide student focus. Electronic Communication provides information on the interrelationship of voltage, current, resistance, inductance, and capacitance as well as discussions of various active devices currently in use. While the text emphasizes semiconductor devices and circuitry, it still retains an adequate amount of vacuum tube theory. In addition, this edition features up-to-date coverage of digital communications and fiber optics, topics that are critical to the skills development of today's communication student. To reinforce understanding of subjects just covered, check-up quizzes are inserted every few pages in most chapters, with answers on the next turned page. End-of-chapter questions, which include number references to the section or figure where the answer can be found, check comprehension of the entire chapters material. Bold letters prefixing many end-of-chapter questions indicate that a similar question may appear in one of the specific certification license tests. The Lab Manual has been expanded to include more experiments that correlate with the revisions made to the text. As always, the manuals experiments reinforce text content and are an integrated part of the total package.

My Personal Review:
Since you can't "search inside this book" on Amazon, I wanted to make people aware that this book is written at the community college/vocational school/electronics technician level. In other words, after the basics on components & resonant circuits, the text describes various communication systems at a qualitative level and attempts to educate people on, e.g., how tweaking component values in a transmitter will influence the end results. This is quite valuable (and something that someone who learns "a bunch of formulas" from a more advanced book may not have a good grasp on),
but you will need some of those more advanced books (and a corresponding mathematical background) if you find yourself in a traditional college or university engineering program. E.g., you won't find a derivation of how a sine wave input to a frequency modulator produces a sum of Bessel functions in the output spectrum, derivation of the large scale gain of a transistor amplifier based on its non-linear behavior, there's no usage of phasors, convolution, LaPlace transforms, etc.

Looking at it the other way around -- people from traditional four year programs will find themselves gaining value from exposure to different communication system devices & architectures that time usually doesn't permit mention of in their formal education, as well as an emphasis on knowing what to expect from and how to troubleshoot existing system. For instance, Shrader has plenty to say about tubes -- enough that you could build an OK amplifier out of them --, whereas many 4 year undergraduate programs only mention them in passing since their usage is so uncommon today. Similarly, Shrader will tell you how to align the various sections of a superheterodyne radio, whereas the traditional 4 year program will just teach you how to calculate the exact (unobtainable in practice) component values needed to achieve perfect alignment.

For More 5 Star Customer Reviews and Lowest Price:
Electronic Communication by Robert Shrader - 5 Star Customer Reviews and Lowest Price!